
The game is afoot:
Using Cloud Insights to help uncover
issues in your stream-processing
Kubernetes application

http://www.netapp.com

Contents

2

The characters 4

The crime 5

The router: The investigation starts 6

The ingestion: A new suspect 7

The message broker: The man in the middle 10

The processor: We are getting closer 11

The storage: The plot thickens 12

The compute: What are our AWS EC2 instances doing? 14

The aftermath: Elementary my dear system 16

At NetApp we eat our own dogfood, using
NetApp® Cloud Insights to help us develop
the next versions of Cloud Insights, and
also to develop other new products and
ensure that they are running as they were
designed to.

In this series we will follow a specific
example of using Cloud Insights to help
us troubleshoot issues in our system.
This is a “whodunnit” story with a crime
(poor performance), several suspects
(architectural components), and a
“the butler did it” ending (the faulty
configuration causing the problem).
It’s a story of load balancers (NGINX),

The game is afoot:
Using Cloud Insights to help uncover
issues in your stream-processing
Kubernetes application

microservices (K8s pods), message
brokers (Kafka), stream processing
(Flink), underlying storage (NetApp Cloud
Volumes ONTAP® FlexVol® technology),
and even AWS EC2 virtual machines.
A story in which the culprit comes from a
side you typically don’t correlate to your
environment (storage and apps outside
your K8s environment that impact the
workings of that environment). A story
in which Cloud Insights is our tool for
following the clues. By the end of
this series, we’ll have collected our
full environment and examined all of
its components.

Application development has gone through incredible changes in the last
couple of years. Today’s microservice, event-driven architecture adoption,
while opening up new horizons for application scale, introduced a level of
complexity that is still not easy to navigate. With this complexity comes
the need for monitoring, troubleshooting, and planning solutions to help
us understand how all the components of our application are behaving
and to help us keep them running healthily.

Follow me, the game is afoot!

3

Our application is a typical stream-
processing application running in
Kubernetes (K8s) in an AWS environment.
The main components are:

1. The agent.
An external tool that captures data points
and sends them to our system.

2. The router.
A router/load balancer for incoming data.
We are using a NGINX ingress controller
for this purpose. NGINX receives requests,
routes them based on URL patterns, and
load balances them across pods of an
ingestion service.

3. The ingestion.
A microservice that receives the data
from the agent, performs very lightweight
validation, and writes accepted data
points into a specified Kafka topic.

The characters

4. The message broker.
A Kafka cluster running across several
brokers. Owns a Kafka topic that stores
requests waiting to be processed.

5. The processor.
A stream-processing engine. We are
using a Flink job to process incoming
data from Kafka. This job is running on a
Flink cluster with several task managers.
The job performs transformation on data
and eventually writes results to disk.

6. The storage.
The disk that is used by the Flink job, an
NFS mount on Flink task managers. We
are using Cloud Volumes ONTAP for our
underlying storage.

7. The compute.
We run our application in Kubernetes
(K8s). Our Kubernetes nodes are
deployed as AWS EC2 instances.

Let’s introduce the main characters of this story, the components of our architecture.
We are developing a stream-processing application. Because this document is
based on a true story, names have been changed to protect privacy and size is
trimmed a bit to fit your screen. This app receives requests from the outside world
and data flows throughout a series of processes, ending with data stored in the
file system.

Ingestion
μs

Message
Broker Processor

NFS

1 2 3 4 5 6

7

Ingestion
LB/Routing

4

The crime

The day started like so many others:
Data was flowing and life was good. But in the middle of the day we begin to
observe some weird behavior. Our most recent data was not being displayed.
It would show up eventually, but with a noticeable delay. Something was
preventing those results from showing up in our system on time. But with so
many components, we didn’t know what was causing the misbehavior. This
went on for a couple of days, and we observed that at about 40 minutes after
every hour data was taking a bit longer to be processed and made available.
The system would eventually pick up and get back on track, but every hour
at that time something was off.

We decided to look closely at each component of our architecture. Let’s bring
them for questioning.

5

The router: The investigation begins

We need an overall picture of our environment, so let’s start at the beginning.
The first entry point to our application is our ingress controller (router/load balancer),
so we’ll start by collecting information from our NGINX controller.

Cloud Insights allows us to capture infrastructure and application data. To figure out
what’s going on with our NGINX component, we first look at captured NGINX data.
Our working assumption was that maybe something was preventing data from
getting into our NGINX controller.

Hmmm… Our NGINX numbers clearly show that is the wrong assumption. There is no
degradation or significant change of behavior in our NGINX controller. Data is coming
in steadily at the same rates throughout the day. You’re free to go, NGINX, we have no
more questions for you. But don’t leave town just yet.

Ingestion
μs

Message
Broker Processor

NFS

1 2 3 4 5 6

7

Ingestion
LB/Routing

6

The ingestion: A new suspect

With NGINX out of the picture, we advance to the next suspect— our ingestion
microservice. The ingestion service is deployed as a Kubernetes deployment, following
all the best practices for resilience, fault tolerance, and scalability. But could this
microservice be misbehaving at some point and causing the problem? We need to look
deeper into this one. Because it’s a microservice deployed as a pod, we decide to start
watching Kubernetes to see how much traffic these pods are receiving and sending out.
Maybe data is being dropped there?

In the Kubernetes cluster explorer in Cloud Insights, we click on our cluster to see the
vital statistics.

Ingestion
μs

Message
Broker Processor

NFS

1 2 3 4 5 6

7

Ingestion
LB/Routing

7

We can see our cluster state, including the top users of the cluster and overall usage
of the cluster. We can even dive into specific nodes to see what’s running there.

Now we can see all pods and containers running on our pod and get an overall picture
of usage of our node. We can also dive deeper into one pod and see the specific
information for that pod along with some simple historical CPU and memory usage.

8

In this case, however, we want to look at the overall ingestion behavior of our pods.
To do this we can view our Kubernetes performance metrics alongside the data from
the rest of our application, all in one convenient view.

We also want to keep tabs on CPU and memory utilization for the containers for those
pods. In all of these views, we have grouped our metrics by kubernetes_cluster,
namespace, pod_name, and container_name to get one line per container, so we
can easily spot anything that looks suspicious.

It looks like our ingestion pods are not to blame after all. We see that the amount of data
flowing in and out is consistent throughout the day, and we don’t see any significant
degradation. We also don’t see any significant memory or CPU impact during the times
that we have issues.

9

The message broker: The man in
the middle

Next in line for questioning is our Kafka broker. Our microservice does some lightweight
processing of incoming data and then writes it to a Kafka topic. Maybe something is
misbehaving in Kafka at the times we observe slow processing?

We can view critical Kafka performance metrics in our application dashboard.

Now that’s interesting… There is not a significant change in the amount of data coming
into Kafka, but we do see some weird behavior around the time that data stops coming
in. We definitely see a difference in the amount of data coming out of Kafka. At least we
see that data coming into Kafka is not the issue. That’s another data point. Now why are
we seeing those changes in the amount of data read from Kafka around those times?

In any case, we think that Kafka can be discarded from the list of suspects.

Ingestion
μs

Message
Broker Processor

NFS

1 2 3 4 5 6

7

Ingestion
LB/Routing

10

The processor: We’re getting closer

Next we move through the track to our Flink job. Our job is pretty well instrumented with
custom metrics for disk writes, and we can take advantage of that in Cloud Insights.

We’ve added to our dashboard the number of ingested records per second for the Flink
operator that writes to disk, as well as our custom metrics and write lag. Now things are
getting interesting.

We do see some drop in writing to disk at around the time of the incident. That is
consistent with the drop we see of data being read from Kafka. But we don’t see any
significant difference in data being ingested by Kafka, so it looks like for some reason
our Flink operator is getting hit when trying to write to disk. What if the problem is
actually in writing to disk?

Ingestion
μs

Message
Broker Processor

NFS

1 2 3 4 5 6

7

Ingestion
LB/Routing

11

The storage: The plot thickens

Our Flink job writes to storage, and that storage is accessible to the Flink TaskManager
pods via the usual Persistent Volume Claim + Persistent Volume setup. It took quite a
few hops to get to this information, but it turns out that when we were looking at our
microservice pods and activated K8s monitoring in Cloud Insights, we started collecting
part of the information we need. The part we’re still missing is the actual storage behind
the persistent volumes information. But this has traditionally been Cloud Insights bread
and butter. Let’s check out the information about our storage, NetApp Cloud Volumes
ONTAP, that our Flink processing pod is using.

In the cluster explorer, we see that our persistent volume is linked to the underlying
storage and some key metrics associated with it. Let’s click through.

Ingestion
μs

Message
Broker Processor

NFS

1 2 3 4 5 6

7

Ingestion
LB/Routing

12

The storage: The plot thickens
Do we see a probable cause? There is an I/O bump happening at the time of the
incident, and a latency bump in accessing our storage. We’re getting closer. But what
is causing it? Who is actually creating this I/O? Our pod does not seem to be a good
candidate, because we have already observed that we have consistent amounts of data
coming
in throughout the day. It’s got to be something else. To round out the picture, we can
also check out AWS EC2 information from the same consolidated application view.

13

The compute: What are our AWS EC2
instances doing?

Taking a closer look into the linked FlexVol volume used by our Flink job, we find a
candidate for the unexpected increase in I/O at the time of the event. Looks like virtual
machine frosa-system-backup is generating some relevant I/O in the volume.
Let’s click along and look closer at that virtual machine.

The probable cause has turned into a solid accusation. This VM is doing some heavy
work at around the time of the degradation.

Ingestion
μs

Message
Broker Processor

NFS

1 2 3 4 5 6

7

Ingestion
LB/Routing

14

Let’s dive onto this EC2 instance, log onto it, and dig around. Upon analysis of the
virtual machine we find a process running every hour at around the 40-minute marker—
a pesky cronjob.

This process is doing data dumps and generating enough I/O to impact the performance
of our internal volume shared with our processing pods. These pods are doing business-
critical operations. We need to fix this EC2 instance to avoid writing to the same
FlexVol volume behind our Flink job Kubernetes persistent volume. We ask our system
administrator to have this EC2 instance attach to a different FlexVol volume.

Our application is now still flying through data. Looks like we solved it!

15

We collected all the clues and with the whole picture in front of us solved our mystery.

There’s a lot more to explore in Cloud Insights; this investigation just scratches the
surface. We can set alerts on any of the components captured in Cloud Insights, and
we can collect a lot more data on any other parts of the system. This is just the
beginning of what you can do.

Give it a try for free. Just go to the Cloud Insights registration page
and get started with your free Cloud Insights trial account.

About NetApp
In a world full of generalists, NetApp is a specialist. We’re focused on one thing, helping your business get the most
out of your data. NetApp brings the enterprise-grade data services you rely on into the cloud, and the simple flexibility
of cloud into the data center. Our industry-leading solutions work across diverse customer environments and the
world’s biggest public clouds.

As a cloud-led, data-centric software company, only NetApp can help build your unique data fabric, simplify and connect
your cloud, and securely deliver the right data, services, and applications to the right people—anytime, anywhere.

The aftermath:
Elementary, my dear system

Typical crime stories have the unexpected culprit, the distant relative that our characters
had lost track of. This story is no different. We have a culprit that is not easily
remembered in Kubernetes monitoring tools. Storage. It’s true – it’s usually not easy
to see the connection between your Kubernetes pods and underlying storage. As
with all good investigations, finding the right clues and relations between suspects is
crucial, and Cloud Insights makes those clues and relations visible to us. By the end of
our investigation we created visibility into our whole infrastructure. While we used this
visibility to help us find a problem, we now have a strong foundation to build on to help
us keep our system healthy. And we should be able to find issues a lot more easily in
the future.

We now collect all data for:
• NGINX ingress controller
• Our whole Kubernetes environment,

including our ingestion microservice
• Kafka brokers and topics
• Flink job and its operators
• Persistent volumes with underlying

NetApp Cloud Volumes ONTAP actual storage
• AWS EC2 virtual machines

© 2021 NetApp, Inc. All Rights Reserved. NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners. NA-550-0321 16

https://bluexp.netapp.com/cloud-insights
http://www.netapp.com/TM

