
eBook

Persistent Volumes,
Dynamic Provisioning,
Cloud Storage

Executive Summary
Kubernetes is today’s most widely-used platform for
container and microservices orchestration and provides the
scalability and flexibility required for deploying enterprise
applications and services. Recent research shows that most
companies that are using containers use them for stateful
applications with storage that is largely provided by the
cloud and in hybrid cloud infrastructures.

In fast-paced DevOps workflows with an emphasis on
product delivery, organizations need to find a way to

provide their pods and containers with persistent storage
without time-consuming manual provisioning.

In this guidebook we’ll discuss everything you need to
know about Kubernetes, from the technology behind
its use, how it works, and how NetApp Cloud Volumes
ONTAP can be used to dynamically and automatically
provision persistent volumes in the cloud via the NetApp
Trident provisioner.

The NetApp and AWS Guide to Kubernetes

The NetApp and AWS Guide to Kubernetes

The NetApp and AWS Guide to Kubernetes 2

Table of Contents
Executive Summary 1

Part One: What Is Kubernetes? 3

 1.1 What Makes Kubernetes So Important 4

 1.2 Provisioning Persistent Volumes For Kubernetes 7

 1.3 Static Provisioning Vs. Dynamic Provisioning 9

 1.4 Managing Stateful Applications In Kubernetes 11

Part Two: Netapp Solutions And Benefits For Kubernetes 12

 2.1 Data Protection For Persistent Data Storage In Kubernetes Applications 13

 2.2 Storage Efficiency For Improving Persistent Volume Storage Costs 15

 2.3 NFS Files Shares And Kubernetes 18

 2.4 Kubernetes with iSCSI Storage 19

 2.5 Cloning Kubernetes Persistent Volumes With FlexClone 20

Part Three: How To Use Trident And Cloud Volumes Ontap With Kubernetes 21

 3.1 Using Cloud Manager For Kubernetes Deployment With Netapp Trident 21

 3.2 Cloning Persistent Volumes 24

 3.3 How To Set Up MySQL Kubernetes Deployments With Cloud Volumes Ontap 25

 3.4 How To Use NFS File Services With Kubernetes 27

Part Four: Customer Success Story Using Cloud Volumes ONTAP for Kubernetes 29

 Migrating SAP, Multiprotocol Shared Files, and DevOps to AWS and Kubernetes 29

Conclusion 30

The NetApp and AWS Guide to Kubernetes 3

What Is Kubernetes?

Containers are lightweight, independent units that software developers and DevOps engineers use to encapsulate
applications. On deployment, a container provides process and file system separation in much the same way as a virtual
machine, but with considerable improvements in server efficiency. That efficiency allows a much greater density of
containers to be co-located on the same host.

To understand kubernetes, you first have to understand the core component of
kubernetes architecture: containers.

Part One

While container technology has been part of Unix-like operating systems since the turn of the century, it was only
with the advent of Docker that containers really came into the mainstream. Docker has succeeded by bringing both
standardization to container runtimes, for example, through the Open Container Initiative, and by creating a complete
container management system around the raw technology, simplifying the process of creating and deploying containers
for end users. Docker, however, can only be used to execute a container on a single host machine. That’s where
Kubernetes stepped in.

Lightweight,
Independent

Process and
System Separation

ColocationBetter Server
Efficiency

vsDocker
Single host machine

Kubernetes
Cluster of machines

https://www.opencontainers.org/

The NetApp and AWS Guide to Kubernetes 4

1.1 What Makes Kubernetes
So Important

Kubernetes makes it possible to execute multiple
instances of a container across a number of machines
and achieve fault tolerance and horizontal scale-out at
the same time. While Kubernetes is completely open-
source and freely available for use with AWS, its origins
lie with Google. Google had been using container
technology internally for over a decade and had
developed their own proprietary solution for data center
container deployment and scaling. Kubernetes builds on
those solutions as an open source project, enabling the
world-wide community of software developers to grow
the platform.

And Kubernetes implementation is growing. According
to research done by Gartner, by 2022 containers are
expected to be in use in 75% of all businesses, which is
a four-year increase of 45%. By 2024, Gartner sees the
total revenue generated by container management to
grow from its current $465.8 million to $944 million.

When it comes to the types of apps in containers,
research recently conducted by 451 Research in The
State of Data Management in the Container Era (Aug
2020) found that a 56% majority of the companies that
use containers devote half of their containers to storing
stateful apps. And the common requirement for all those
stateful workloads is persistent storage.

451 Research also found that to get that to meet their
storage demands, 46% of the companies that are using
containers are turning to the public cloud for storage
services, with a large number of them also orchestrating
container usage across hybrid cloud infrastructures that
utilize existing on-premises systems with the cloud. The
challenge in this growing trend is for those organizations
to ensure seamless data mobility and availability.

The ability to manage applications independently of
infrastructure holds great value for cloud deployments.
We can build out a cluster of machines in the cloud that
provides the compute and storage resources for all of
our applications, and then let Kubernetes ensure we
get the best resource utilization. Kubernetes can also
be configured to automatically scale the cluster up and
down in response to changes in demand.

For deployed applications, Kubernetes offers many
benefits, such as service discovery, load balancing,
rolling updates, and much more. Kubernetes acts as an
application server that is used to run all of the services,
message queues, batch processes, database systems,
caching services, etc. that make up an enterprise
application deployment.

The flexibility of this service has driven Kubernetes
introduction and adaptation across the cloud. Today
all the major cloud vendors offer a native Kubernetes
service; on AWS this kind of fully managed service is
available through Amazon EKS. Kubernetes is also the
foundation of other container orchestration platforms,
such as Red Hat OpenShift.

Kubernetes Takes Container Deployment
To A Whole New Level By Providing
A Robust Solution For Managing
Containers, And Containerized Workloads
Across A Cluster Of Machines.

At The Heart Of Kubernetes
Is Containerization

Multiple
Machines

More
Scalable

Fault
Tolerance

Open
Source

https://github.com/kubernetes/kubernetes
https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-strong-revenue-growth-for-global-co
https://www.gartner.com/en/newsroom/press-releases/2020-06-25-gartner-forecasts-strong-revenue-growth-for-global-co
https://aws.amazon.com/eks/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc&eks-blogs.sort-by=item.additionalFields.createdDate&eks-blogs.sort-order=desc

The NetApp and AWS Guide to Kubernetes 5

Important Kubernetes Terminology

 Cluster

The collective set of compute nodes and storage
resources that form a Kubernetes environment. Each
cluster has at least one master, which is responsible
for overall management of the cluster, and a number of
nodes on which containers will be scheduled to execute.
Each node must have a container runtime installed,
which is usually Docker, but may be an alternative, such
as rkt.

 Pod

In the Kubernetes architecture, a set of containers may
be deployed and scaled together. This is achieved by
using pods, which are the minimum unit of deployment in
a Kubernetes cluster, and allow more than one container
to share the same resources, such as IP address, file
systems, etc.

 Deployment

A deployment is used to control Kubernetes pod
creation, updates, and scaling within the cluster, and
is normally used for stateless applications. A stateless
application does not depend on maintaining its own
client session information, allowing any instance of the
application to be equally capable of serving
client requests.

 Stateful Sets

For certain types of applications, such as database
systems, it is crucial to maintain the relationship between
pods and data storage volumes. Stateful sets provide an
alternative model to Kubernetes Deployments, and give
each pod a unique and durable identity.

 Stateless Applications

Stateless applications do not keep a private record of
client session information, which allows any running
instance of the same application to process incoming
requests. Applications deployed to Kubernetes or to
containers in general are typically stateless, and so are
easier to scale out horizontally across the cluster.

 Services

When multiple, interchangeable pod replicas are active
at the same time, clients need a simple way to find any
active pod they can send requests to. Services solve this
problem by acting as a gateway to a set of pods, which
may even exist in a different Kubernetes cluster.

In this section, we’ll give you an introduction to Kubernetes terminology that describes the main moving parts that make
up the service.

1 4

5

6

2

3

https://coreos.com/rkt/

The NetApp and AWS Guide to Kubernetes 6

 Volume

A storage provisioned directly to a pod. Kubernetes
supports a wide variety of volume types. On AWS,
Kubernetes volumes will be based on Amazon EBS.
Volumes enable the containers within a pod to share
information and are destroyed when their parent pod
is deleted.

 Persistent Volume

A volume that exists independently of any specific pod
and with its own lifetime. Persistent volumes can be
used to support stateful applications, such as database
services, enabling all components of an enterprise
solution to be deployed and managed by Kubernetes.
Another major advantage of using persistent volumes
is that they insulate the developers creating pods from
the lower-level implementation details of the storage
they are accessing. This allows a persistent volume to
be provisioned using a local disk, for example, on a
developer workstation, and using Cloud Volumes ONTAP
in production.

 Persistent Volume Claim

A claim for a persistent volume, which acts as the link
between a pod and a persistent volume. A persistent
volume claim is used by Kubernetes to search for
suitable persistent volumes that can fulfil the request.
This search is based on the size of the required storage,
the access mode, a selector definition used to match
against labels on the persistent volume, and, optionally, a
storage class name.

 Storage Class

Storage classes add a further level of abstraction to
storage provisioning by allowing persistent volume
claims to only specify the type of storage they require.
For example, slow, fast, and shared may all be valid user-
defined storage classes. Storage class also encapsulates
the details of the provisioner to be used, the type of
volume to create, as well as other provisioner-specific
settings. This gives much greater control to the cluster
over how the storage is provisioned, which is why
storage classes are generally used with dynamic
storage provisioning.

 Dynamic Storage Provisioning

When Kubernetes administrators are required to manually
set up persistent volumes ahead of time, this is known as
static provisioning. By contrast, dynamic provisioning is
used to automatically allocate persistent volumes based
on the persistent volume claims that are received by the
cluster. The type of storage to allocate is determined by
the storage class specified in the claim.

 Provisioner

When using dynamic storage provisioning, each storage
class will stipulate the provisioner that should be used
to create new persistent volumes. Internal provisioners
are provided by Kubernetes for a wide range of storage
options, such as Amazon EBS, however, it’s also possible
to specify external provisioners, such as NetApp Trident.

7 10

11

12

8

9

The NetApp and AWS Guide to Kubernetes 7

1.2 Provisioning Persistent
Volumes For Kubernetes

Storage is required by containers and pods for a variety
of purposes, from caching data to building stateful
applications, such as database services. Kubernetes
uses persistent volumes to create a separation between
the application developers that simply require storage for
their pods and the lower level details of how that storage
is provisioned. This layer of abstraction allows the
storage implementation to be controlled independently
of requesting applications. That means that, for example,
storage can be provisioned using local storage in a
development cluster and with a more robust solution
in production.

Each persistent volume is created by a provisioner
that uses a plugin to interface with different types of
backend storage, such as Amazon EBS. The lifetime of
a persistent volume is determined by its reclaim policy,
which controls the action the cluster will take when a pod
releases its ownership of the storage.

Persistent Volumes Provide Storage
Resources To Pods In The Same Way
That Nodes Provide Compute

Volume

Storage provisioned directly to a pod
that enables the containers within a pod
to share information. Destroyed when
their parent pod is deleted.

Persistent Volume

A volume that exists independently
of any specific pod and with its own
lifetime. Can be used to support
stateful applications, such as database
services, enabling all components of an
enterprise solution to be deployed and
managed by Kubernetes.

The NetApp and AWS Guide to Kubernetes 8

This is how it works:
Each pod uses a persistent volume claim to bind to
storage from the cluster of a particular size, access mode,
and volume mode. The claim can also use a selector
to only match volumes with a specific set of labels. On
receiving a claim, the cluster will search for an existing
persistent volume with which to fulfill the request.

Kubernetes Uses Persistent Volume
Claims To Provide Clusters With Storage Persistent Volume Claim

A claim for a persistent volume, which
acts as the link between a pod and a
persistent volume. Used by Kubernetes
to search for suitable persistent
volumes that can fulfill the request.

The NetApp and AWS Guide to Kubernetes 9

1.3 Static Provisioning Vs. Dynamic Provisioning

Cluster administrators can pre-allocate persistent
volumes for the cluster, known as static provisioning,
however, this requires prior knowledge of storage
requirements as a whole. Dynamic volume

There Are Two Choices For How Persistent Volumes Are Provisioned By Kubernetes:
Static And Dynamic.

Static Provisioning

• Set amount of storage before use

• Controlled by administrators

• Pro: Storage spend is fixed

• Con: Can’t scale storage if needed

Dynamic Provisioning

• Created more organically

• Automatic creation process

• Pro: Able to provision volumes as needed

• Con: No set limit on storage spend

provisioning is an alternative model for managing
storage provisioning in Kubernetes, and is used to
automatically deploy persistent volumes based on the
claims received by the cluster.

vs

The NetApp and AWS Guide to Kubernetes 10

Using Dynamic Provisioning In A Kubernetes Cluster Reduces A Lot Of The
Administrative Overhead Involved In Manually Creating Persistent Volumes.

Automatically allocating and deallocating persistent volumes in response to persistent volume claims can also help
to reduce wasted storage that is allocated but never used. Persistent volume claims that are fulfilled dynamically
make use of a storage class attribute to specify the type of storage required, which allows for data to be tiered by I/O
performance profile.

Kubernetes comes with a variety of internal provisioners
that dynamically allocate storage using Amazon EBS and
many other storage platforms. However, that’s where the
support for storage ends: storage management features,
such as creating and restoring backups, ensuring high
availability, and provisioning test copies of persistent
volumes are all out of scope for Kubernetes and must
be catered for by cluster administrators. In a hybrid or

Storage Class

Storage classes add a further level of
abstraction to storage provisioning by allowing
persistent volume claims to only specify the
type of storage they require. Encapsulate the
details of the provisioner to be used, the type
of volume to create, etc. This is generally used
with dynamic storage provisioning

multicloud environment, this can lead to a multitude of
different solutions that will increase the complexity of
managing storage across the enterprise.

What can you do to avoid that? In the next section we’ll
discuss NetApp’s solution: NetApp Trident and Cloud
Volumes ONTAP.

https://kubernetes.io/docs/concepts/storage/storage-classes/

The NetApp and AWS Guide to Kubernetes 11

1.4 Managing Stateful Applications In Kubernetes

Stateful applications, such as database services
and message brokers, record and manage the
information generated within an enterprise platform.
Though Kubernetes has always supported stateless
applications—which are horizontally scalable due to the
interchangeability of each pod—stateful applications
require stronger guarantees for the storage they use.

Why the need for extra guarantees when it comes to
stateful vs. stateless? Whereas the storage used by
stateless containerized applications can simply be
re-initialized when a pod is rescheduled to a different
node in the cluster, stateful applications are recording
business-critical information that must be preserved
at all costs—that requires persistent storage with an
independent lifetime.

Kubernetes persistent volumes are used to create a
layer of abstraction between pods and their provisioned
storage, allowing each to be managed separately. Pods
use a persistent volume claim as a request for storage
that is matched to a persistent volume by the
Kubernetes cluster.

Using a reclaim policy of “retain”, a persistent volume
will not be deleted or cleared down after the persistent
volume claim is released. Because of this, in the event of
a failure or the rescheduling of the pod onto a different
node, the relationship between pod and storage can be
re-established.

Take a look at this example use case of deploying
MySQL with WordPress where persistent volumes were
used in this way to deploy a database server.

In both static and dynamic provisioning scenarios,
stateful applications have a very real need for reliable
storage that is resilient against failure, and data
protection features, such as backup and restore. In and
of itself, these facilities are not provided by Kubernetes,
but are instead delegated to the provisioner used and the
storage backend. Users have to find outside solutions,
such as Trident and Cloud Volumes ONTAP.

Trident provisions new persistent container storage
that benefit from all of NetApp’s data management
capabilities. Using stateful sets simplifies the deployment
of all stateful applications by automating much of the
required provisioning and administrative activity. If a pod
in a stateful set goes down, Kubernetes will automatically
bind a new instantiation of the pod to the dynamically
provisioned persistent volume it was previously using.

Stateful Sets

For certain types of applications, such
as database systems, it is crucial to
maintain the relationship between pods
and data storage volumes. Stateful
sets provide an alternative model to
Kubernetes deployments, and give each
pod a unique and durable identity.

Stateless Applications

Stateless applications do not keep
a private record of client session
information, which allows any running
instance of the same application
to process incoming requests.
Applications deployed to Kubernetes
or to containers in general are typically
stateless, and so are easier to scale out
horizontally across the cluster.

https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/
https://kubernetes.io/docs/tutorials/stateful-application/mysql-wordpress-persistent-volume/

The NetApp and AWS Guide to Kubernetes 12

NetApp Solutions
and Benefits for
Kubernetes

NetApp Trident is a dynamic storage provisioner for
Kubernetes that fulfils persistent volume claims using
storage managed by Cloud Volumes ONTAP, leveraging
Amazon Elastic Block Storage (Amazon EBS) or on-
premises NetApp storage appliances as the storage back
end for Kubernetes persistent volumes. This enables
Kubernetes clusters to take advantage of the power
of NetApp storage management for persistent volume
provisioning in on-premises, hybrid cloud, or
multicloud environments.

The Cloud Volumes ONTAP data management platform
expands on AWS’s native capabilities by providing:

Netapp Trident And Cloud Volumes
Ontap Work Together To Dynamically
Provision Volumes For Kubernetes

 High Availability

Cloud Volumes ONTAP HA provides storage failover
capability that works across Availability Zones, and
guarantees high availability, RPO=0, and RTO < 60
seconds.

 Data Protection

NetApp Snapshots™ are used to create instant, space
efficient, backups of a storage volume of any size
that can be instantly restored. NetApp SnapMirror®
technology uses snapshots as the basis for incrementally
replicating a volume to another instance of Cloud
Volumes ONTAP, which may reside in another region as a
DR or backup secondary copy.

 Multiprotocol File and Block Storage

A flexible, scalable, performant, and secure solution for
deploying file shares and file services with multiprotocol
access for NFS and iSCSI-based persistent storage for
stateful containerized workloads.

 Storage Efficiencies

Volumes created using Cloud Volumes ONTAP are able to
use built-in technologies such as thin provisioning, data
deduplication, and data compression making it possible
to reduce cloud storage footprint and operational costs
by 70%.

 Data Tiering

Cloud Volumes ONTAP can transparently tier cold data
from cloud-based block storage to object storage on
Amazon S3, significantly reducing persistent
storage costs.

 Storage Cloning

Using NetApp FlexClone® technology, existing storage
volumes can be instantly and space-efficiently cloned
and made available for read/write use. Trident integrates
with cloning to allow persistent volume claims to use a
clone, rather than always provisioning new storage.

1

4

5

6

2

3

Part Two

https://blog.netapp.com/five-reasons-to-get-on-the-trident-bandwagon/
https://cloud.netapp.com/ontap-cloud

The NetApp and AWS Guide to Kubernetes 13

2.1 Data Protection For
Persistent Data Storage In
Kubernetes Applications

Kubernetes caters for persistent data storage through
persistent volumes, which have a lifecycle that is
independent of any particular container and that can be
provisioned using a diverse range of storage platforms.

How do different storage solutions protect that data
differently? For example, persistent volumes can
be provisioned using Amazon EBS, which provides
some level of data redundancy within an Availability
Zone; however, this is not sufficient protection for all
organizations where end users are expected to build
their own solutions to protect data across Availability
Zones, or across regions. When it comes to Kubernetes
workload DR requirements, investing in this type of data
protection is not only mandatory for business continuity
and regulatory requirements, it also pays huge dividends
in the long run.

Enterprise workloads typically have a strong requirement
for reliable data storage. Kubernetes persistent volumes
can be provisioned using a variety of solutions. However,
ensuring that the data is easy to backup and restore,
always available, consistent, and durable in a Kubernetes
workload DR (Disaster Recovery) situation or any other
failure is the responsibility of end users
and administrators.

Stateful applications in production environments, such
as database services, require access to redundant and
highly available data storage. Most stateless applications
make use of stateful services in order to fulfill client
requests, and therefore have an indirect dependency
on robust data storage services as well. Kubernetes
provides a lot of flexibility when it comes to persistent
data storage provisioning, however, each solution uses
its own specific mechanisms for protecting data, which
may also have limitations.

A Solution for Persistent Data Needs

Another important requirement for protecting persistent
data storage is the ability to create and restore backups.
Examples of why you’d take regular backups include
ensuring that previous versions of the data are available
in case of user error and providing your deployment in
Kubernetes security against malicious access, such as
ransomware attacks. Due to the large size of production
datasets, an efficient procedure is required not only to
create backups, but also to restore them consistently.

The NetApp and AWS Guide to Kubernetes 14

ONTAP Snapshots

can be used to instantly create space-
efficient backups for Kubernetes
storage of any size. Using NetApp
SnapCenter®, application-aware
snapshots can be created by
temporarily freezing I/O write operations
in order to guarantee that the data is in
a consistent state before a snapshot is
taken. Snapshots can also be instantly
restored back to the original source
volume or to a new volume. Users can
even access the snapshot directly as a
read-only view of the source data at the
point in time the snapshot was created.

Data replication

of a Kubernetes workload DR site
in another region can be easily
accomplished using NetApp
SnapMirror®, which provides efficient,
block-level data replication between
ONTAP storage environments. After
creating an initial baseline copy, all
further synchronization occurs on an
incremental basis, copying over only the
data that has changed. Cloud Volumes
ONTAP can also be used to failover
storage to the destination volume, and
efficiently re-synchronize in the reverse
direction in order to failback. As well
as mirroring storage for DR purposes,
NetApp SnapMirror can also be used
to create a repository for long-term
backups and data archiving.

Cloud Volumes ONTAP HA

is a high availability solution that
automatically mirrors storage volumesto
a secondary instance of Cloud Volumes
ONTAP, which may be placed in a
different Availability Zone or Availability
Set. These two instances can be
deployed in either an active-active or
active-passive configuration, with the
ability to failover and failback between
the nodes without affecting client
applications that are actively using the
storage. Should a planned or unplanned
failover be required, Cloud Volumes
ONTAP HA provides an RPO=0, i.e.
zero data loss, and an RTO of less than
60 seconds.

Cloud Volumes ONTAP makes use of a number of
features to better protect your data in Kubernetes.

You can get better data protection
using Cloud Volumes ONTAP.

https://cloud.netapp.com/blog/snapshots-technology-cloud-volumes
https://cloud.netapp.com/blog/snapshots-technology-cloud-volumes
https://cloud.netapp.com/blog/simplified-disaster-recovery-ontap-cloud-snapmirror
https://cloud.netapp.com/blog/simplified-disaster-recovery-ontap-cloud-snapmirror
https://cloud.netapp.com/high-availability-storage
https://cloud.netapp.com/high-availability-storage

The NetApp and AWS Guide to Kubernetes 15

2.2 Storage Efficiency
For Improving Persistent
Volume Storage Costs

In both static and dynamic provisioning, it can be a
challenge to ensure storage efficiency, as application
developers must prepare for storage usage peaks and
can often overestimate the amount of storage they need.
In a cloud environment, this leads to an unnecessary
increase in cloud storage costs.

Many times, large allocations of storage made for
an application are never used, and in other cases
the data stored within a persistent volume is never
compressed, leading to extra storage space being used
up unnecessarily. These types of issues can be resolved
using the storage efficiency technologies that are part
of Cloud Volumes ONTAP, which the NetApp Trident
provisioner makes available to Kubernetes.

There may also be situations where a large part of the
production dataset is cold, or infrequently accessed, but
which cannot be moved to more cost-effective storage
without introducing a lot of complexity to the ways

application services rely on that data. These application
services require a uniform view of their data, with fast
access to hot data and on-demand access to cold data.
This can again be a difficult problem to solve, resulting in
large allocations of high performance and costly storage.

Another scenario where transparently-applied storage
efficiency would hold great value is where the data
being stored contains a high degree of redundancy,
which could be compressed in order to reduce the
overall amount of storage required. Moving the onus for
compression to the storage layer simplifies application
software development and also helps to reduce the cloud
storage footprint of legacy and third-party application
services, where changes to the systems cannot be made.

Though storage efficiency is always important in
the cloud, it can be even more so in Kubernetes
environments due to the inherent scalability of
containers. Spinning up new pods to deal with an
increase in workload, or to provide greater redundancy
and availability, also requires allocating new persistent
volumes. The storage overhead for these persistent
volumes can be brought under control through efficient
data storage.

https://cloud.netapp.com/blog/handling-storage-cost-and-cloud-sprawl
https://cloud.netapp.com/blog/handling-storage-cost-and-cloud-sprawl

The NetApp and AWS Guide to Kubernetes 16

You can reduce kubernetes storage costs with cloud volumes ontap
storage efficiencies.
Trident benefits Kubernetes by making it possible to take advantage of NetApp’s enterprise-grade storage efficiencies of
Cloud Volumes ONTAP, providing Kubernetes advantages in terms of transparently reducing the storage space required
for persistent volumes.

Thin Provisioning

Thin provisioning makes it possible to create persistent volumes that appear to pods as having the
size they requested through a persistent volume claim, but without needing to allocate all of that
storage in advance. Cloud Volumes ONTAP will automatically add storage capacity to the persistent
volume as and when it is required, and also return freed up storage to the common pool when data is
deleted. This ensures that storage space is only allocated when it’s actually needed, which reduces
storage usage costs and drives up storage space utilization. Thin provisioning also makes it much
easier to plan for the future storage requirements of the cluster.

Data Deduplication

Cloud Volumes ONTAP is able to transparently apply transformations, which help to reduce storage
space usage, to the data it stores. Data deduplication collapses identical copies of a block into a
single block, with reference pointers inserted into every place the block is used. This can dramatically
reduce storage space requirements, with some customers reporting savings of up to 70%. A small
amount of storage space is consumed in order to maintain the metadata required to support the
block mappings.

The NetApp and AWS Guide to Kubernetes 17

Data Compression

Data in an ONTAP storage volume can be transparently compressed without requiring any changes
to client applications and services. This compression is applied to groups of consecutive blocks, as
opposed to entire files, which makes reading and updating highly optimal. Data compression can also
be used in conjunction with data deduplication.

Data Compaction

NetApp is constantly innovating and extending the capabilities of the ONTAP platform, and
data compaction is one of the more recent features to be introduced. After applying inline data
deduplication and compression, multiple blocks that are not completely filled are combined together,
removing the unused space that would have otherwise been left in each block.

Storage Tiering

A major advantage of using Cloud Volumes ONTAP is the ability to automatically balance data
between a capacity storage tier for colder data and a performance tier for fast access. Depending
on the cloud vendor being used, Cloud Volumes ONTAP will use Amazon S3 for the capacity tier,
which provides significant cost savings for large amounts of data that are infrequently accessed, but
that must still be available on-demand. When the data is required, it is transparently moved to the
performance tier, and will age back out to the capacity tier when it is no longer in active use.

Read more about how Storage Efficiency for Improving Persistent Volume Storage Costs.

https://cloud.netapp.com/blog/storage-efficiency-for-improving-persistent-volume-storage-costs

The NetApp and AWS Guide to Kubernetes 18

2.3 NFS File Shares And Kubernetes

The NFS (Network File System)
protocol is widely used in sharing files
for enterprise environments, allowing
many users to access the same
files at the same time. This makes
sharing data a lot easier. NFS can be
used for a wide range of use cases,
such as for creating data lakes for
building analytics solutions, database
services, data archives, etc. If you’re
using Kubernetes, NFS can be used
with Kubernetes pods to manage
persistent storage requirements
and share data and files between
containers and other pods.

There are several reasons why NFS
shared storage is preferable for
Kubernetes deployments. For starters,
there’s an advantage to NFS over
iSCSI because managing a large
number of individual iSCSI storage
allocations can add to administrative
overhead. All those block-level

persistent volume allocations can
make storage management more
difficult, especially when Kubernetes
persistent volumes are statically
allocated. In these cases, storage
utilization may be lower, as a
persistent volume is used only for a
single pod and that pod may not
make use of all of its storage. Also,
sharing data between pods can
be difficult when using block-level
persistent volumes.

Unless containers are deployed to
the same pod, sharing data between
containers can also be difficult.
Deploying containers in this way,
i.e. to the same pod, should only
be done when it makes sense for
the application, such as when the
containers work together directly
to fulfill some function. Putting
containers into the same pod when
they simply need to share data can

lead to scalability problems as a pod
will only be scheduled to a
single node.

NFS solves these problems by
allowing many hosts to mount the
same file system at the same time,
and for all hosts to access files
concurrently. With NFS, users don’t
need to format the storage volume
using an Operating System file
system, such as ext4; the storage can
simply be mounted and used straight
away. This makes it much easier to
attach storage to pods and reduce the
administrative overhead of working
with persistent storage. NFS storage
volumes in Kubernetes can also be
easily expanded without any client-
side changes using Trident, which
we’ll discuss in more detail in the
next section.

https://cloud.netapp.com/blog/cloud-based-file-share-services-part-1
https://cloud.netapp.com/blog/cloud-based-file-share-services-part-1

The NetApp and AWS Guide to Kubernetes 19

2.4 Kubernetes with iSCSI Storage

iSCSI shared block storage is a
crucial element in the cloud when
running demanding clustered
workloads, such as databases,
parallel file systems, persistent
containers, and machine learning.
Shared block storage makes it
easier to achieve the performance
requirements of these workloads
without compromising on data
resiliency such as application high
availability and quick failover.

The public cloud providers have
recently begun to offer options
for cloud-based iSCSI storage.
However, not all shared block storage
services are alike, and some miss
out on crucial features such as high
availability, built-in data protection,

storage efficiencies, instant cloning,
and more.

In containerized environments
such as Kubernetes, block
storage infrastructure needs to be
provisioned in a unified way to avoid
overburdening the deployment
operationally and avoid driving
up costs due to overprovisioning
and inefficient storage usage. This
storage also needs to be sharable
and have sufficient protections for
backup, security, and data privacy.
The CI/CD pipeline is also crucially
dependent on seamless block
storage flexibility, with data copies
available to spin up test copies at a
massive scale without letting costs
get out of control.

NetApp Cloud Volumes ONTAP
provides an efficient shared block
storage infrastructure that can meet
these container-specific needs.
Combining public cloud storage and
compute, Cloud Volumes ONTAP
gives Kubernetes high performance
block storage that can guarantee
uptime with high availability to
maintain strict SLAs and SLOs.
Through NetApp Cloud Manager
APIs, thin block storage clones of
live containerized workloads can be
instantly created and be integrated
automatically with CI/CD pipelines,
optimizing the DevOps workflow and
reducing TTM.

https://cloud.netapp.com/cvo-cloud-block-storage
https://cloud.netapp.com/cvo-cloud-block-storage

The NetApp and AWS Guide to Kubernetes 20

2.5 Cloning Kubernetes Persistent Volumes with FlexClone

Creating test copies of production
data is very often a requirement for
DevOps engineers implementing
CI/CD pipelines or setting up staging
clusters for pre-production testing.
Automated software test suites
will often mutate the data that they
access, which means that a fresh
copy of the data is required in order
to repeat the testing, with test cycles
sometimes executed hundreds of
times. Ensuring faster TTM (Time
To Market) and the delivery of
high quality software relies upon
developers working in parallel and
executing tests as often as required.

Restoring data backups is not a
scalable solution for creating test
data sets: with the size of the source

data involved it just takes too much
time to perform a restore. This leads
to reduced developer productivity
when multiple, up-to-date copies
of persistent volumes are required,
which also have to be refreshed
frequently. Using this approach also
means that the amount of storage
used to develop and support an
application will be many times greater
than the storage requirements of the
production environment, causing a
significant increase in cloud storage
costs. That’s not something any
developer wants to get blamed for.

The time taken to perform a restore
and the storage space it uses can
both be very wasteful, as usually
most of the restored data remains

unaffected by the software testing
and must be recreated simply
to bring the data to a consistent
point or to get an up-to-date copy.
In contrast, not only is NetApp
FlexClone able to instantly clone a
source volume of any size, it also
does so with zero storage penalty for
any storage size required. NetApp
Trident helps you take advantage
of this for persistent volumes in a
Kubernetes cluster.

In the third part of this guidebook
we’ll walk you through the steps of
cloning your persistent volumes in
order to facilitate test environments
and reduce your storage footprints.

https://cloud.netapp.com/blog/the-devops-benefits-of-using-ontap-cloud
https://cloud.netapp.com/blog/the-devops-benefits-of-using-ontap-cloud

The NetApp and AWS Guide to Kubernetes 21

How to Use Trident and Cloud Volumes
ONTAP with Kubernetes
In this section we’ll see a few coding examples for how
users can make Trident and Cloud Volumes ONTAP work
with their deployments on Kubernetes.

Using the NetApp Cloud Manager platform, which is
available both as a SaaS and as a solution, you can
deploy and manage instances of Cloud Volumes ONTAP.
Cloud Manager uses a graphical, web-based interface
that makes it easy to setup Cloud Volumes ONTAP
storage services and organize them across multiple
tenants for better overall manageability.

On-premises systems and AWS deployments can all
be controlled from a single dashboard, and NetApp
SnapMirror replication relationships created between
them with a simple drag-and-drop. Cloud Manager
allows us to deploy NetApp Trident to a Kubernetes
cluster and then relate the cluster to Cloud Volumes
ONTAP instances.

Part Three

Using Cloud Manager with Trident

MySQL Kubernetes Deployments
with Cloud Volumes ONTAP

Cloning Persistent Volumes

NFS with Kubernetes

3.1 Using Cloud Manager For
Kubernetes Deployment
With Netapp Trident

Prerequisites

Before you can start you should make sure that you
have network access between Cloud Manager, the
instances of Cloud Volumes ONTAP to be used, and
the actual Kubernetes cluster. Cloud Manager will
also require internet access in order to download the
latest deployment packages for NetApp Trident. You
should also have your kubeconfig file downloaded
from Kubernetes.

The NetApp and AWS Guide to Kubernetes 22

1. To deploy Trident you should begin by going to Cloud Manager. Head to the Kubernetes tab on the menu bar.

2. On the Kubernetes screen, click the “Discover Cluster” button.

3. Next you will upload your kubeconfig file. Note: the kubeconfig file contains all your cluster’s configuration
details, and should be downloaded directly from Kubernetes itself first.

Once the file is uploaded, click “Save Cluster” to proceed.

Associating the kubernetes cluster with cloud volumes ONTAP

The NetApp and AWS Guide to Kubernetes 23

4. Go back to the Working Environments screen and select the Cloud Volumes ONTAP instance that you want to use with
Trident. On that Cloud Volumes ONTAP volume’s details, click on the Kubernetes icon in the top right-hand corner.

5. On this page, select the Kubernetes cluster that you just uploaded and your default storage class. For this example, we
will select NFS.

When you’re done, click “Connect.”

6. Go to the Timeline screen on the menu bar, and see that the Kubernetes cluster is being associated with the Cloud
Volumes ONTAP instance. The Trident provisioner will be installed transparently in the background during this time.

7. You can verify that Trident was installed successfully by going to your Kubernetes cluster and running the
kubectl get pod command.

The NetApp and AWS Guide to Kubernetes 24

Data cloning can help speed up TTM and reduce
storage footprint and costs. Instead of always
provisioning new persistent volumes in response to
persistent volume claims, using Trident the user can
clone existing volumes. To instruct Trident to create a
clone, simply give it the name of the persistent volume
claim that was used to provision the original persistent
volume, which must also have been allocated through
Trident. This information is provided through a metadata
annotation on the persistent volume claim that is
requesting the volume clone.

In the background, Trident will find the ONTAP volume
that was used to provision storage for the original
persistent volume claim and then use NetApp FlexClone
to perform a data cloning operation. Clones are created
by using a snapshot on the parent volume. Both the
clone and parent volumes are free to accept changes
to their data, which are written to new blocks using
a redirect-on-write mechanism that protects blocks
locked by a snapshot from being overwritten. Using this
technique, the clone requires negligible storage space
when it is first created, and only grows with the changes
that are made to it.

3.2 Cloning Persistent
Volumes

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: basicclone
 annotations:
 trident.netapp.io/cloneFromPVC: basic
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: basic

By using the default reclaim policy of delete, the clone
will automatically be deleted when the pod using it is
destroyed. This can be used to conveniently clean up
any allocated storage at the end of a round of testing, for
example. Trident also supports an optional annotation
to split the clone from the parent volume it is associated
with. This turns the clone into an independent copy of
the data, which means the space efficiencies discussed
previously will be lost, however, this can be more
suitable in scenarios when the clone will undergo a lot
of changes, or when the state of a volume is needed to
provide seed data for a new requirement.

https://cloud.netapp.com/blog/provisioning-devops-environments-ontap-cloud

The NetApp and AWS Guide to Kubernetes 25

MySQL is a popular flavor of SQL database. The
following provides an example of deploying a single
Kubernetes MySQL instance using NetApp Trident.

First, we will create a persistent volume claim for the
storage we need. As Trident uses dynamic provisioning,
we will specify a storage class, which must have been
setup prior to executing this manifest. Each storage class
defines the provisioner to be used, along with any other
provisioner-specific settings that will determine how the
storage is provisioned.

When this claim is used by a pod, Trident will
automatically create a 100 GiB high-performance
storage volume in Cloud Volumes ONTAP to fulfil the
request. This storage class may have been implemented
to make use of Amazon EBS Provisioned IOPS disks,
for example. A reclaim policy of “retain” has also been
specified, which will prevent the persistent volume from
being deleted if the pod releases the claim.

3.3 How To Set Up MySQL
Kubernetes Deployments
With Cloud Volumes ONTAP

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: mysql-pvc
 annotations:
 trident.netapp.io/reclaimPolicy: “Retain”
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Gi
 storageClassName: high-performance

https://cloud.netapp.com/blog/important-parameters-to-consider-when-running-sql-in-the-cloud

The NetApp and AWS Guide to Kubernetes 26

We can additionally set up test instances of our
Kubernetes MySQL database using Trident’s integration
with NetApp FlexClone. The following persistent volume
claim manifest demonstrates how this can be done.

We simply annotate our claim with the name of the
persistent volume claim to clone from, and Trident takes
care of the rest by automatically finding the source
storage volume in Cloud Volumes ONTAP and performing
a NetApp FlexClone operation. The default reclaim
policy of delete will ensure that the clone volume is
automatically deleted when it is no longer required.

We can now bind a pod to this storage by referencing
it in our MySQL deployment manifest. As shown below,
we simply need to reference our previously defined
persistent volume claim and specify where the bound
persistent volume should be mounted within our MySQL
Kubernetes container.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mysql-server
 labels:
 app: mysql
spec:
 selector:
 matchLabels:
 app: mysql
 tier: database
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: mysql
 tier: database
 spec:
 containers:
 - image: mysql:5.6
 name: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-pass
 key: password
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-pv
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-pv
 persistentVolumeClaim:
 claimName: mysql-pvc

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: mysql-pvc-clone
 annotations:
 trident.netapp.io/cloneFromPVC: mysql-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 100Gi
 storageClassName: high-performance

The NetApp and AWS Guide to Kubernetes 27

As a Kubernetes NFS provisioner, the benefits of
using Trident include mounting persistent volumes as
Read/Write Many, dynamically resizing NFS persistent
volumes, and creating separate storage classes for
different mount parameters and other requirements.

Persistent Volumes using NFS can be mounted as
Read/Write Many, which allows multiple pods to mount
the same volumes. Using native Kubernetes constructs
means that storage can be allocated without the need
for custom procedures or processes. Using the Read/
Write Many access mode allows many persistent
volumes claims to access the same persistent volume.

With block-level Kubernetes persistent volumes, Read/
Write Once must be used, which means that there is a
1-to-1 relationship between persistent volume claims
and persistent volumes.

Here’s a persistent volume claim (PVC) for a Kubernetes
NFS volume example:

3.4 How To Use NFS File
Services With Kubernetes

Mounting Persistent Volumes as
Read/Write Many

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nfs_share
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Gi
 storageClassName: silver

The NetApp and AWS Guide to Kubernetes 28

New to provisioning in Kubernetes is the support for
editing persistent volumes claims to request more
storage space. With this new capability, persistent
volumes can be expanded without needing to re-
create the pod that uses the storage. In order for that
to happen, the underlying storage provisioner must
support resize. The commonly used provisioners
support this—except not when it comes to NFS.
With Trident, NFS persistent volumes can be
dynamically resized and all the back-end changes
required taken care of. This makes Trident a major
value-add.

By extending the support for resizing persistent
volumes to NFS, Trident is a major value add.

Block-level storage, such as Amazon EBS, needs to
have the file system extended when the underlying
storage is expanded. Kubernetes will take care of
this, but it will also require that the pod using the
storage to be restarted. That will cause downtime.
With NFS, no file system expansion is required, and
the pod can continue to work without interruption.

You can read more about resizing NFS volumes with
Trident here.

Separate storage classes can be created for different
mount parameters and other requirements, for
example using separate storage classes for NFSv3
and NFSv4.

Storage classes allow users to control the type
and configuration of the storage they are using
when provisioning in Kubernetes. That extends to
the Kubernetes dynamic provisioning NFS storage
Trident provides.

Take this Kubernetes NFS storage class example. Here is
the storage class manifest:

Dynamically Resizing NFS
Persistent Volumes

Creating Separate Storage Classes

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: ontapnas
provisioner: netapp.io/trident
parameters:
 backendType: ontap-nas
allowVolumeExpansion: true

The allowVolumeExpansion attribute controls whether
the resizing of persistent volumes created using this
storage class is allowed or not.The storage class can be
used to control the storage pool, or NetApp aggregate
used to provision persistent volumes, e.g. a storage class
named gold may be used to configure high performance
back-end storage, where as one called bronze may be
configured for capacity storage.

https://netapp-trident.readthedocs.io/en/latest/kubernetes/operations/tasks/volumes.html
https://netapp-trident.readthedocs.io/en/latest/kubernetes/operations/tasks/volumes.html

The NetApp and AWS Guide to Kubernetes 29

Customer Success Story: Migrating
SAP, Multiprotocol Shared Files, and
DevOps to AWS and Kubernetes

Part Four

In this section we’ll introduce you in brief to an
organization that has turned to Cloud Volumes ONTAP
to enhance their data management capabilities for
Kubernetes and containerized workload requirements.

This company is a major energy producer in APAC. Their
products and services are integral to how their country
keeps the lights on, with involvement at every level of the
energy process from discovery, production, distribution,
and retail.

The challenge for this company was to provide their
infrastructure with multiprotocol shared storage for
their SAP workload migration to AWS and to deploy a
data management layer for their Kubernetes clusters
persistent storage. They tried to develop a DIY solution
that could serve both SMB and NFS, however the
solution was not adequate for their
production environment.

By adding Cloud Volumes ONTAP to their deployment,
they were able to migrate and provide multiprotocol
access (NFS and SMB) for their SAP database. Beyond
the SAP migration and the data management layer for
Kubernetes clusters persistent storage, this company
also saw the value in using Cloud Volumes ONTAP as
a central part of managing multiple environments in a
hybrid storage solution.

Business Challenges

• The company required a shared storage
service that supported Linux and
Windows storage protocols.

• Migrating their entire on-premises array
to AWS.

Solution

• Cloud Volumes ONTAP HA for AWS

Benefits

• Shared file storage that can serve NFS
as well as SMB/CIFS.

• Persistent data for their Kubernetes
clusters in AWS.

• Easy “lift and shift” migration to AWS.

• Hybrid storage management solution.

The NetApp and AWS Guide to Kubernetes 30

Conclusion
Kubernetes is today’s most widely-used platform
for container and microservices orchestration and
provides the scalability and flexibility required for
deploying enterprise applications and services on AWS.
Managing storage in a Kubernetes cluster with dynamic
storage provisioning massively reduces the manual
administration required for allocating cloud storage to
pods and containers.

Using NetApp Trident, Kubernetes storage requests on
AWS are dynamically fulfilled by Cloud Volumes ONTAP,
which similarly does for storage what Kubernetes does
for containers.

Now that you’ve had this Kubernetes guide, find out
for yourself how Cloud Volumes ONTAP transforms
container storage management with a free 30-day free
trial on AWS.

Start a 30-day
free trial on AWS

Start now

https://learn.cloud.netapp.com/start-free-trial-plp1-aws-mkt-cvo

The NetApp and AWS Guide to Kubernetes 31

Refer to the Interoperability Matrix Tool (IMT) on the NetApp Support site to validate that the exact product and feature versions described
in this document are supported for your specific environment. The NetApp IMT defines the product components and versions that can be
used to construct configurations that are supported by NetApp. Specific results depend on each customer’s installation in accordance with
published specifications.

Copyright Information
Copyright © 1994–2021 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be
reproduced in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an
electronic retrieval system—without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE
HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or
liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this
product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June
1987).

Trademark Information
NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product
names may be trademarks of their respective owners.

NA-000-1120

http://mysupport.netapp.com/matrix

