Cloud bursting is a deployment model that runs applications in a data center or private cloud, and then bursts into public clouds, as needed, when computing demands spike. This type of hybrid cloud deployment enables organizations to pay for extra computing resources on-demand.
Organizations typically leverage cloud bursting for applications that tend to experience spikes and fluctuations in load. Cloud bursting should not be applied for applications that rely on complex delivery infrastructure or integrated systems and components.
This article is part of our series about hybrid cloud management.
In this article, you will learn:
You can apply cloud bursting using three types of approaches—distributed load balancing, manual bursting, and automated bursting.
Distributed load-balancing approaches operate workloads in tandem between a public cloud and a data center.
Load balancing is used to simultaneously provision cloud resources, such as compute instances, monitoring, and storage, and then deploy data center workloads to provisioned cloud services.
Load monitoring, when applied to local workloads, provides the data needed to redirect traffic. You set a threshold for each load, and then distribute as needed:
To use this technique, you need to deploy a workload locally and in the cloud. This means load balancing operations share traffic with the cloud as needed. You need to set up a standby deployment in the cloud with limited capacity, which then scales up as needed to accommodate additional loads. The downside of this technique is that it can accumulate overhead when the cloud workload is not active.
Related content: read our guide to hybrid cloud storage
Manual bursting is a technique that lets you manually provision and deprovision cloud-based services and resources according to notifications sent from your load balancer.
Organizations leverage manual bursting to create large, but temporary cloud deployments to meet a required work. Once the cloud deployment is no longer needed, it is destroyed, to reduce costs.
Manual bursting provides distinct advantages for testing and proof-of-concept cloud bursting projects. However, it also increases human error risks, such as delays in receiving notifications and deployment oversights. This could lead to a costly cloud sprawl if the deployment continues operating.
Automated bursting enables you to set up policies that define how bursting is handled, and then the software performs the process.
Full automated and dynamic bursting techniques help organizations provision cloud resources and services on-demand, deploying when needed and immediately deprovisioning cloud resources when traffic demands are met sufficiently or fall.
Automated bursting tools usually use cloud application programming interfaces (APIs) to programmatically facilitate dynamic interactions with cloud infrastructure and resources. The tool can automatically grow, create, shrink, and remove cloud resources according to workload changes. You can leverage automated bursting to reduce human error and cut costs.
A cloud bursting architecture can provide significant cost savings, increase the efficiency of operations, and improve overall performance and productivity. However, there are certain challenges that prevent cloud bursting from being a good fit for a wide scope of applications.
Cloud bursting is ideal for:
Cloud bursting is not a good fit for:
You can also use cloud bursting for data streams that fluctuate daily, like those transmitted by radio telescope arrays, and shift the load between applications. This can work with cloud bursting if you preprocess to avoid too many data movements.
To ensure optimal usage and billing, organizations need to keep track of cloud resources and services. However, cloud services are composed of many micro services and functions, and are therefore difficult to monitor effectively.
Related content: read our comparison of hybrid cloud storage services
To properly use cloud bursting, organizations need:
NetApp Cloud Volumes ONTAP, the leading enterprise-grade storage management solution, delivers secure, proven storage management services on AWS, Azure and Google Cloud. Cloud Volumes ONTAP supports up to a capacity of 368TB, and supports various use cases such as file services, databases, DevOps or any other enterprise workload, with a strong set of features including high availability, data protection, storage efficiencies, Kubernetes integration, and more.
Learn how Cloud Volumes ONTAP can help your organization achieve cloud bursting: